Novel mutations in the glucocerebrosidase gene of Indian patients with Gaucher disease

Chitra Ankleshwaria1, Mehul Mistri1, Ashish Bavdekar2, Mamta Muranjan3, Usha Dave4, Parag Tamhankar5, Varun Khanna6, Eresha Jasinge7, Sheela Nampoothiri8, Suresh Edayankara Kadangot9, Frenny Sheth1, Sarita Gupta10 and Jayesh Sheth1

1 Department of Biochemical & Molecular Genetics, FRIGE’s Institute of Human Genetics, Ahmedabad, India
2 Department of Pediatrics, K.E.M. Hospital, Pune, India
3 Department of Pediatrics, Pediatrics Research Lab, K.E.M. Hospital, Mumbai, India
4 Nextline Diagnostics LLP, Mumbai, India
5 ICMR Genetic Research Center, National Institute for Research in Reproductive Health, Mumbai, India
6 Institute of Life Sciences, Ahmedabad University, Ahmedabad, India
7 Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
8 Department of Pediatric Genetics, Amrita Institute of Medical Science and Research, Cochin, India
9 Department of Pediatrics, Malabar Institute of Medical Sciences Ltd, Calicut, India
10 Department of Biochemistry, MS University, Vadodara, India

Gaucher disease (GD) is the most common glycolipid storage disorder resulting from glucocerebrosidase deficiency due to mutations in the GBA gene. Study was performed in 33 unrelated patients with low b-glucosidase activity in leukocytes and/or fibroblasts. The exons and exon–intron boundaries of the GBA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and were looked up in public databases, and in silico analysis was carried for novel mutations. We identified two novel missense mutations G289A (c.866G4C) and I466S (c.1397T4G) in exons 7 and 10, respectively, in two (6.06\%) patients that destabilize the protein structure. L444P (c.1448T4C) was the most common mutation identified in 20/33 (60.60\%) non-neuronopathic and 1/33 (3.03\%) subacute neuronopathic form based on clinical presentation at the time of investigation. Other nine rare mutations were: R463C (c.1504C4T), R395C (c.1300C4T), R359Q (c.1193G4A), G355D (c.1181G4A), V352M (c.1171G4A) and S356F (c.1184C4T) found in each patient (18.18\%). Compound heterozygous mutation L444P (c.1448T4C)/R496C (c.1603C4T) in exon 10/11 and L444P (c.1448T4C)/R329C (c.1102C4T) were observed in exon 10/8 in one each patient (6.06\%). Two patients (6.06\%) from Sri Lanka showed E326K (c.1093G4A) mutation in exon 8. We conclude that L444P is the most common mutant allele with exons 8 and 10 as the hot spot region of GBA gene observed in Indian GD patients.

Journal of Human Genetics advance online publication, 13 February 2014; doi:10.1038/jhg.2014.5